www.8455com / Blog / 澳门新葡8455 / www.8455com苏州纳米所新型纳米复合光致变形智能材料研究获系列进展

www.8455com苏州纳米所新型纳米复合光致变形智能材料研究获系列进展

www.8455com苏州纳米所新型纳米复合光致变形智能材料研究获系列进展。近期,吉林大学张永来教授、清华大学孙洪波教授与新加坡国立大学仇成伟教授在Advanced
Material杂志上以封面文章在线发表了题为 “Plasmonic-Assisted Graphene
Oxide Artificial Muscles”
的研究论文。该论文利用石墨烯与金纳米棒复合材料制备了光敏感的仿肌肉驱动器件(HAM),运用巧妙的设计方法,无须集成组装过程,实现了复杂的肢体动作和多足运动,在光驱动仿生机器人方面取得了突破性的进展。

www.8455com,光致变形材料是一种在光波的照射下,材料本体发生变形现象的新型智能材料,它能实现光能到机械能的直接转化,而无需通过齿轮等机械传送装置的转换,具有远程的、无接触、无损伤、易操控等特点,在仿生机器人、生物医学器件、微流控、太阳帆等领域具有重要的应用前景。因而发展高性能的光致变形材料具有重要的科学意义和应用价值。对于光致变形材料的设计而言,能量转换方式和结构组装是两个重要的方面,会直接影响到光-机械的性能输出。
中国科学院苏州纳米技术与纳米仿生研究所研究员陈韦课题组近年来致力于纳米复合的光致变形研究,通过从微观到宏观的多级结构有序组装,发展了一系列基于光响应纳米基元的宏观聚合物基柔性光致变形材料,成功地将纳米尺度的光响应积累放大为宏观尺度的光致变形。他们设计合成了多种具有光-机械响应的纳米级棒状分子晶体,通过原位结晶或自发组装的方式使纳米尺寸分子晶体具有特定的取向性和分布性,从而使宏观薄膜获得良好的光致变形特性,在较弱的365nm紫外光照下发生显著弯曲,而在暗环境下完全恢复(Angew.
Chem. Int. Ed., 2013, 52,
6496.);以具有波长选择性的金纳米颗粒和金纳米棒作为能量转换基元,设计了基于光热驱动原理的双晶片光驱动器,得到了可调波长选择性和湿度梯度的新颖驱动机理(J.
Mater. Chem. C, 2015, 3,
1888.);将碳纳米管与石墨烯复合,并且刻意地引入了界面热应力,获得了卷曲的石墨烯-碳纳米管/聚合物光致变形薄膜,该复合薄膜在光照射下可在数秒的时间内从卷曲的形状展开成平直的形状,当光照撤出后,可快速恢复到其*初的卷曲形状,从而具有类形状记忆特性,在此基础上,发展了光驱动机器人、智能窗帘等一系列原型光驱动器件(Adv.
Mater. 2015, 27, 7867.)。
该课题组在纳米复合光致变形领域的上述研究工作受到国际同行的关注。*近,该课题组结合国内外研究现状,对光致变形的基本驱动机理、光响应纳米基元的选择设计、从微纳尺度光响应到宏观光致变形的组装策略、基于光致变形材料器件的实际应用做了全面的总结和展望,并于近期在国际学术期刊《先进材料》上在线发表该综述文章(Adv.
Mater., DOI: 10.1002/adma.201602685.)。
上述工作得到了国家自然科学基金、科技部港澳台合作专项以及江苏省自然科学基金等的大力支持。

在仿生机器人的设计中,模仿肌肉作用的驱动部位是实现运动的关键。目前,驱动器研究集中于对驱动方法或环境刺激的控制,然而特定的驱动器件往往只能实现单一的变形。此外,目前仿生机器人多采用电驱动方式,需要集成能源部件,或外接能源供给装置,使得系统在小型化方面受到制约。

针对这一难题,科研者利用石墨烯材料具有良好的导热性和机械性能,石墨烯氧化物材料导热性能大大降低的特点,采用激光还原石墨烯氧化物对材料导热性能进行改性,实现“关节”部位导热性能改变。将具有一定的负热膨胀系数的石墨烯、石墨烯氧化物材料与具有较大热膨胀系数的PMMA材料结合,可在光热条件下产生单一的圆弧状弯曲,利用激光局部还原石墨烯氧化物材料,改性区域的弯曲程度大大提高,响应时间加快,可形成类似肌肉牵拉作用的关节弯曲效果。科研者还进一步加入了金纳米棒,提升了材料的光热转化效率,加速了膨胀材料的形变。此外,金纳米棒材料独特的波长选择特性,不仅为光驱动方法提供了光强、时间的调控方法,还增加了波长调控方法。利用这一原理,科研者成功完成了微型仿生蜘蛛的爬行过程、仿生捕蝇草捕获过程,和仿生手各关节的逐一控制弯曲,体现了HAM设计的灵活性,这一工作为微型仿生机械运动提供了新的设计理念。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图